The “YOLO9000: Better, Faster, Stronger” paper describes the improvements to the YOLO, You only look once, architecture that enables realtime object detection and classification. It can classify over 9000 object categories and outperforms Faster RCNN with ResNet and SSD while being significantly faster. They train on both COCO dataset for detection simultaneously with ImageNet for Classification and combine it with a wordtree so that they can also fallback to “dog” if they cannot classify for instance a specific dog breed.
The first version, and architecture can be seen in this paper.
Here is a video presentation: https://www.youtube.com/watch?v=GBu2jofRJtk