Deep Drive Dataset available

The large dataset for teaching your algorithms to drive can be downloaded from http://bdd-data.berkeley.edu/.

It contains over 100,000 HD video sequences, that make up over a thousand hours of footage. The data contains over 100 000 annotated  images for object detection for bus, traffic light, traffic sign, person, bike, truck, motor, car, train, and rider. Alos segmentation, drivable area, lane markings etc.

I love how data is released to the public for the greater good.

The new Fast.ai 2 Videos available

The Fast and the Furious 2 of machine learning is now available for your pleasure.

http://course.fast.ai/part2.html

Fast.ai is the very best way to learn practical Deep Learning. Period.

The first iteration of course 1 and 2, used Keras  and the new versions use their own library built on top of PyTorch. Their new library is awesome and has a lot of useful best practice functions.

Harward Data Science Course 2015

If you are interested in learning more about Data Science, you can check out the course page for the CS109 Data Science Course at Harvard University.
Topics covered are among others:

  • Pandas
  • Python
  •  Web Scraping
  • Regular Expressions
  • Data Reshaping
  • Data Cleanup
  • Probability
  • Distributions
  • Frequentist Statistics
  • Bias and Regression
  • SVM, Decision Trees, Random Forests
  • Ensemble Methods
  • MapReduce
  • Spark
  • Bayes Theorem and Bayesian Methods
  • Interactive Visualization
  • Deep Networks

The final Deep Learning Specialization course is now out

After a long wait, the final and much-anticipated course in the Coursera Deep Learning Specialization series taught by Andrew Ng, called Sequence Models, has now been released.

The first week will be about Recurrent Neural Networks, the second week will address Natural Language Processing & Word Embeddings and the final week will be about Sequence models & Attention mechanism.

 

Fast.ai 2018 has been released, and it’s truly awesome

Last year the 2017 course of fast.ai was amazing, which taught state of the art deep learning to coders. There are so many goodies in the blog post about the Fast.ai 2018 launch which is available now. This year they held the course using Pytorch instead of Keras and wrote their own library for speeding up development and were the first to add several implementations from papers to the library such as Learning Rate Finder (Smith 2015) and Stochastic Gradient Descent with Restarts (SGDR). With one line of code, you can also get the images that the classifier gets wrong.

17 of the 20 top participants in a kaggle competitors were students in the preview course.

I recommend reading the blog post and taking the course.

DeepMinds AlphaZero beat the strongest open-source chess engine

We know that computers have beat humans in chess, that was a great breakthrough and a milestone in AI.
The worlds strongest AI for chess, called Stockfish was recently dethroned by a deep reinforcement AI by Googles DeepMind called AlphaZero.

Here is a walkthrough of the third game further explanation on chess.com “How Does AlphaZero Play Chess?

Titta på AlphaZero vs Stockfish Chess Match: Game 3 från Chess på www.twitch.tv

Image recognition and AI on a Raspberry Pi 3 using MobileNets and Neural Compute Stick

If you are building a robot driven by Raspberry Pi and want to use image recognition and object detection you may want to look into Googles Mobile Nets platform which lets you do use a several mobile-first computer vision models for TensorFlow, combined with an Intel Movidius Neural Compute Stick on a Rasrberry PI 3.  The MobileNets platform is designed to be run on resource conservative devices while maintaining accuracy and the latter will give you an order of magnitude more compute power than running the detection on the raspberrys CPU.